If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+25x-100=0
a = 8; b = 25; c = -100;
Δ = b2-4ac
Δ = 252-4·8·(-100)
Δ = 3825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3825}=\sqrt{225*17}=\sqrt{225}*\sqrt{17}=15\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-15\sqrt{17}}{2*8}=\frac{-25-15\sqrt{17}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+15\sqrt{17}}{2*8}=\frac{-25+15\sqrt{17}}{16} $
| 2x+48/5=6 | | 1/2a+3=13 | | 6x-9=51+4x | | 7y-2y-6=9 | | 3a-2a+6=12 | | x/3+2=24 | | (p*1/3)-3=144 | | 5x+2=12x-2x | | z+2/3=3z+2/5 | | 8y+12=7y-21 | | 2x3+5x2-x-6=0 | | 3x+-14=2x+9 | | 3n+4n+N= | | 3(2x–4)=15 | | 32-5y=0 | | 2y+5y=9 | | 10x-13=7x+10 | | 0,2x+0,7= 1,1 | | 1/4x-1/3x=2 | | ?x?x?=567 | | 50-114=x | | 2.10x=44.10 | | -8x+3(7x+4=-6+10x | | 2x+7+3x=x-1 | | 4x+22/6=5 | | 6x4=100 | | 15+4x=x-6 | | 5x1=20 | | 2x+5=-3+25 | | 5x^2+9x-8360=0 | | 9+5w-14=-12-6w | | 2(5-5p)=60 |